国际翻译动态|如何通过自我反思教会大语言模型翻译?
翻译技术教育与研究 2024年08月04日 00:00 陕西
以下文章来源于国际翻译动态 ,作者高竟慧
国际翻译动态
How to Teach Large Language Models to Translate Through Self-Reflection
如何通过自我反思教会大语言模型翻译
In a June 12, 2024 paper researchers from Tencent AI and the Harbin Institute of Technology introduced TasTe, a method for teaching large language models (LLMs) to translate through self-reflection.
2024年6月12日,腾讯人工智能和哈尔滨工业大学的研究人员在发表的论文中提到了一种教大语言模型(LLMs)通过自我反思进行翻译的方法,即TasTe。
The key idea is to enable LLMs to generate preliminary translations (i.e., drafts), self-evaluate their own translations, and make refinements based on the evaluation.
TasTe的主要做法是让LLMs先初步翻译(即生成草稿) ,然后对译文自我评估,并根据评估完善译文。
The researchers explained that LLMs have shown exceptional performance across various natural language processing tasks, including machine translation (MT). However, their translations still do not match the quality of supervised neural machine translation (NMT) systems.
研究人员解释说,大语言模型在各种自然语言处理任务中表现出色,包括机器翻译(MT)。然而,他们的翻译仍然无法与有监督模式的神经机器翻译(NMT)系统的质量相匹配。
To address this, the authors proposed the TasTe framework (translating through self-reflection), which improves the translation capabilities of LLMs by incorporating a self-reflection process.
鉴此,作者提出TasTe,意在通过加入自我反思提高LLMs的翻译能力。
This process consists of two stages. In the first stage, LLMs are prompted to generate preliminary translations (i.e. drafts) while simultaneously making quality predictions for these translations. The quality predictions can be in the form of labels like “good,” “medium,” and “bad” or scores ranging from 0 to 100. This self-assessment step allows the models to evaluate the quality of their own outputs.
自我反思包含两个阶段。第一阶段,LLMs经提示生成初步翻译,同时对这些翻译进行质量预测。质量预测可以用“好”、“中”和“坏”的标签进行标注,或者给出0到100的评分。这种自我评估的步骤可以让模型对其译文质量进行评价。
In the second stage, LLMs refine these preliminary translations based on the quality predictions in the first stage to produce final translations. According to Xuebo Liu, Assistant Professor at Harbin Institute of Technology, speaking to Slator, low-quality drafts with severe errors undergo extensive modifications, medium-quality drafts with minor errors receive moderate adjustments, and high-quality drafts with minimal or no errors require little to no changes. “By equipping models to tailor their modifications to the draft quality, we effectively rectify conspicuous errors and prevent the misguidance of error propagation that could otherwise compromise originally accurate translations, thereby safeguarding the overall translation quality,” he added.
第二阶段, LLMs在初翻的基础上精进译文,产出最终译文。哈尔滨工业大学助理教授刘雪波在接受Slator采访时表示:质量预测差,错误多的初稿会被大幅修改;质量预测中等,错误较轻的只需适当修改;预测质量高,错误很少甚至没有的,几乎不需要修改。他补充说:“通过让模型根据草稿质量调整修改,我们可以有效地纠正明显的错误,并防止错误扩散,进而保护整体的翻译质量。这种扩散如果不加以控制,可能会影响原本准确的翻译。
This entire process can be seen as a form of self-reflection, mirroring the common “try-evaluate-improve” approach humans use when handling complex tasks to execute them more effectively, Liu said.
他还说,整个过程可以看作是一种自我反思,就像人类为更有效处理复杂任务时经常会采取“尝试-评估-改进”的方式。
Automatic Post-Editing Tool
自动译后编辑工具
They evaluated TasTe in four language directions (German English and Chinese English) using the WMT22 benchmark. They found that TasTe outperformed existing methods by effectively utilizing the self-assessment to enhance translation quality.
为了对TasTe进行评估,他们使用WMT22基准在四种语言翻译方向进行了测试(英德互译和中英互译),发现TasTe通过有效利用自我评估来提高翻译质量,超越了现有翻译方法。
Additionally, they tested if this approach could be used to evaluate translations generated by other systems and refine them as an automatic post-editing (APE) tool. They found that “TasTe can not only serve as an effective inference framework for a single LLM but also as an APE tool to enhance translations generated by other translation systems.”
此外,他们测试了这种方法是否可以用来评估其他系统生成的翻译,并将其作为自动译后编辑(APE)工具进行改进。他们发现, “TasTe不仅可以作为单个大语言模型的有效推理框架,还可以作为增强其他翻译系统生成翻译的自动译后编辑工具。”
The authors provide their code and datasets for further research at GitHub.
作者在GitHub上提供了他们的代码和数据集,以供进一步研究。
Authors: Yutong Wang, Jiali Zeng, Xuebo Liu, Fandong Meng, Jie Zhou, Min Zhang
作者:王宇通、曾佳丽、刘雪波、孟凡东、周洁、张敏
原文网址:
How to Teach Large Language Models to Translate Through Self-Reflection – Slator
特别说明:本文内容选自slator官网,仅供学习交流使用,如有侵权请后台联系小编删除。
– END –