Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the betterdocs domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /data/user/htdocs/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the jnews-view-counter domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /data/user/htdocs/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wp-statistics domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /data/user/htdocs/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wpdiscuz domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /data/user/htdocs/wp-includes/functions.php on line 6114

Notice: 函数 _load_textdomain_just_in_time 的调用方法不正确jnews 域的翻译加载触发过早。这通常表示插件或主题中的某些代码运行过早。翻译应在 init 操作或之后加载。 请查阅调试 WordPress来获取更多信息。 (这个消息是在 6.7.0 版本添加的。) in /data/user/htdocs/wp-includes/functions.php on line 6114

Notice: 函数 _load_textdomain_just_in_time 的调用方法不正确jnews-like 域的翻译加载触发过早。这通常表示插件或主题中的某些代码运行过早。翻译应在 init 操作或之后加载。 请查阅调试 WordPress来获取更多信息。 (这个消息是在 6.7.0 版本添加的。) in /data/user/htdocs/wp-includes/functions.php on line 6114

Warning: Cannot modify header information - headers already sent by (output started at /data/user/htdocs/wp-includes/functions.php:6114) in /data/user/htdocs/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /data/user/htdocs/wp-includes/functions.php:6114) in /data/user/htdocs/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /data/user/htdocs/wp-includes/functions.php:6114) in /data/user/htdocs/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /data/user/htdocs/wp-includes/functions.php:6114) in /data/user/htdocs/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /data/user/htdocs/wp-includes/functions.php:6114) in /data/user/htdocs/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /data/user/htdocs/wp-includes/functions.php:6114) in /data/user/htdocs/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /data/user/htdocs/wp-includes/functions.php:6114) in /data/user/htdocs/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /data/user/htdocs/wp-includes/functions.php:6114) in /data/user/htdocs/wp-includes/rest-api/class-wp-rest-server.php on line 1893
{"id":35166,"date":"2024-10-17T23:26:19","date_gmt":"2024-10-17T15:26:19","guid":{"rendered":"https:\/\/linguaresources.com\/?p=35166"},"modified":"2024-10-17T23:26:19","modified_gmt":"2024-10-17T15:26:19","slug":"%e7%bf%bb%e8%af%91%e5%ad%a6%e4%b9%a0-100%e4%b8%aa%e5%b8%b8%e8%a7%81ai%e5%90%8d%e8%af%8d%ef%bc%88%e9%99%84%e5%b8%a6%e8%a7%a3%e9%87%8a%ef%bc%8c%e4%b8%8b%e7%af%87%ef%bc%89","status":"publish","type":"post","link":"https:\/\/linguaresources.com\/?p=35166","title":{"rendered":"\u7ffb\u8bd1\u5b66\u4e60 | 100\u4e2a\u5e38\u89c1AI\u540d\u8bcd\uff08\u9644\u5e26\u89e3\u91ca\uff0c\u4e0b\u7bc7\uff09"},"content":{"rendered":"

\u7ffb\u8bd1\u5b66\u4e60 | 100\u4e2a\u5e38\u89c1AI\u540d\u8bcd\uff08\u9644\u5e26\u89e3\u91ca\uff0c\u4e0b\u7bc7\uff09<\/strong><\/h1>\n

<\/a>\u7ffb\u8bd1\u6280\u672f\u6559\u80b2\u4e0e\u7814\u7a76<\/span>\u00a02024\u5e7410\u670817\u65e5 00:03<\/em>\u00a0\u9655\u897f<\/span><\/em><\/span><\/p>\n

\u4ee5\u4e0b\u6587\u7ae0\u6765\u6e90\u4e8e\u7f51\u4e8b\u968f\u8a00<\/span>\u00a0\uff0c\u4f5c\u8005\u7f51\u4e8b\u968f\u8a00<\/span><\/p>\n

\"\"<\/span>\u7f51\u4e8b\u968f\u8a00<\/strong>.<\/span><\/a><\/p>\n

\u5728\u7e41\u5fd9\u7684\u7f51\u7edc\u4e16\u754c\u4e2d\uff0c\u6211\u4eec\u6bcf\u5929\u90fd\u88ab\u65e0\u6570\u4fe1\u606f\u5305\u56f4\u3002\u4ece\u793e\u4f1a\u70ed\u70b9\u5230\u5a31\u4e50\u516b\u5366\uff0c\u4ece\u79d1\u6280\u53d1\u5c55\u5230\u751f\u6d3b\u7410\u4e8b\uff0c\u8fd9\u4e9b\u201c\u7f51\u4e8b\u201d\u6784\u6210\u4e86\u6211\u4eec\u65e5\u5e38\u751f\u6d3b\u7684\u91cd\u8981\u7ec4\u6210\u90e8\u5206\u3002<\/p>\n

 <\/p>\n

\"\"<\/p>\n

51. \u7a00\u758f\u7f16\u7801\uff08Sparse Coding\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u7a00\u758f\u7f16\u7801\u662f\u4e00\u79cd\u65e0\u76d1\u7763\u5b66\u4e60\u65b9\u6cd5\uff0c\u65e8\u5728\u627e\u5230\u8f93\u5165\u6570\u636e\u7684\u7a00\u758f\u8868\u793a\u3002\u7a00\u758f\u8868\u793a\u4e2d\u7684\u5927\u591a\u6570\u5143\u7d20\u4e3a\u96f6\u6216\u63a5\u8fd1\u96f6\uff0c\u53ea\u6709\u5c11\u6570\u5143\u7d20\u5177\u6709\u663e\u8457\u503c\u3002\u8fd9\u79cd\u8868\u793a\u65b9\u6cd5\u53ef\u4ee5\u63d0\u9ad8\u6570\u636e\u7684\u53ef\u89e3\u91ca\u6027\u548c\u538b\u7f29\u6548\u7387\u3002
<\/span><\/p>\n

52. \u56fe\u795e\u7ecf\u7f51\u7edc\uff08Graph Neural Networks, GNNs\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1aGNNs\u662f\u4e00\u79cd\u7528\u4e8e\u5904\u7406\u56fe\u5f62\u6570\u636e\u7684\u795e\u7ecf\u7f51\u7edc\u67b6\u6784\u3002\u5b83\u4eec\u901a\u8fc7\u9012\u5f52\u5730\u805a\u5408\u90bb\u5c45\u8282\u70b9\u7684\u4fe1\u606f\u6765\u66f4\u65b0\u8282\u70b9\u7684\u8868\u793a\uff0c\u4ece\u800c\u6355\u83b7\u56fe\u5f62\u4e2d\u7684\u7ed3\u6784\u548c\u5173\u7cfb\u3002
<\/span><\/p>\n

53. \u8fdb\u5316\u7b97\u6cd5\uff08Evolutionary Algorithms\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u8fdb\u5316\u7b97\u6cd5\u662f\u4e00\u7c7b\u6a21\u62df\u81ea\u7136\u9009\u62e9\u548c\u9057\u4f20\u5b66\u539f\u7406\u7684\u4f18\u5316\u7b97\u6cd5\u3002\u5b83\u4eec\u901a\u8fc7\u8fed\u4ee3\u5730\u9009\u62e9\u3001\u4ea4\u53c9\u548c\u53d8\u5f02\u5019\u9009\u89e3\u6765\u5bfb\u627e\u95ee\u9898\u7684\u6700\u4f18\u89e3\u3002
<\/span><\/p>\n

54. \u6a21\u7cca\u903b\u8f91\uff08<\/strong><\/span>Fuzzy Logic<\/strong><\/span>\uff09<\/strong><\/span><\/span><\/p>\n

\u89e3\u91ca\uff1a\u6a21\u7cca\u903b\u8f91\u662f\u4e00\u79cd\u5904\u7406\u4e0d\u7cbe\u786e\u548c\u6a21\u7cca\u4fe1\u606f\u7684\u903b\u8f91\u7cfb\u7edf\u3002\u5b83\u5141\u8bb8\u4f7f\u7528<\/span>\u96b6\u5c5e\u5ea6\u51fd\u6570<\/span>\u6765\u63cf\u8ff0\u4e8b\u7269\u5c5e\u4e8e\u67d0\u4e2a\u7c7b\u522b\u7684\u7a0b\u5ea6\uff0c\u5e76\u63d0\u4f9b\u4e86\u4e0e\u4f20\u7edf\u4e8c\u503c\u903b\u8f91\u4e0d\u540c\u7684\u63a8\u7406\u65b9\u6cd5\u3002<\/span><\/span>
<\/span><\/p>\n

55. \u7fa4\u4f53\u667a\u80fd\uff08Swarm Intelligence\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u7fa4\u4f53\u667a\u80fd\u662f\u6307\u901a\u8fc7\u6a21\u62df\u81ea\u7136\u754c\u4e2d\u7fa4\u4f53\u884c\u4e3a\uff08\u5982\u6606\u866b\u3001\u9e1f\u7c7b\u7b49\uff09\u6765\u89e3\u51b3\u590d\u6742\u95ee\u9898\u7684\u6280\u672f\u3002\u5b83\u5229\u7528\u5927\u91cf\u7b80\u5355\u4e2a\u4f53\u4e4b\u95f4\u7684\u76f8\u4e92\u4f5c\u7528\u548c\u534f\u4f5c\u6765\u5b9e\u73b0\u5168\u5c40\u4f18\u5316\u548c\u51b3\u7b56\u3002
<\/span><\/p>\n

56. \u6df1\u5ea6\u5b66\u4e60\u6846\u67b6\uff08Deep Learning Frameworks\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6\u662f\u4e13\u95e8\u7528\u4e8e\u6784\u5efa\u548c\u8bad\u7ec3\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u7684\u8f6f\u4ef6\u5e93\u3002\u5e38\u89c1\u7684\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6\u5305\u62ecTensorFlow\u3001PyTorch\u3001Keras\u3001Caffe\u7b49\u3002\u8fd9\u4e9b\u6846\u67b6\u63d0\u4f9b\u4e86\u9ad8\u7ea7\u7684API\u548c\u5de5\u5177\uff0c\u4f7f\u7814\u7a76\u4eba\u5458\u548c\u5f00\u53d1\u8005\u80fd\u591f\u66f4\u9ad8\u6548\u5730\u6784\u5efa\u548c\u90e8\u7f72\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u3002
<\/span><\/p>\n

57. \u5f3a\u5316\u5b66\u4e60\u4e2d\u7684\u63a2\u7d22\u4e0e\u5229\u7528\uff08Exploration vs. Exploitation\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u5728\u5f3a\u5316\u5b66\u4e60\u4e2d\uff0c\u667a\u80fd\u4f53\u9700\u8981\u5728\u63a2\u7d22\u65b0\u73af\u5883\u548c\u5229\u7528\u5df2\u77e5\u4fe1\u606f\u4e4b\u95f4\u505a\u51fa\u6743\u8861\u3002\u63a2\u7d22\u610f\u5473\u7740\u5c1d\u8bd5\u65b0\u7684\u52a8\u4f5c\u4ee5\u83b7\u53d6\u66f4\u591a\u5173\u4e8e\u73af\u5883\u7684\u4fe1\u606f\uff0c\u800c\u5229\u7528\u5219\u662f\u6307\u6839\u636e\u5f53\u524d\u7684\u77e5\u8bc6\u9009\u62e9\u6700\u4f18\u52a8\u4f5c\u3002\u8fd9\u79cd\u6743\u8861\u662f\u5f3a\u5316\u5b66\u4e60\u4e2d\u7684\u4e00\u4e2a\u91cd\u8981\u6311\u6218\u3002
<\/span><\/p>\n

58. \u81ea\u7136\u8bed\u8a00\u5904\u7406\u4e2d\u7684\u547d\u540d\u5b9e\u4f53\u8bc6\u522b\uff08Named Entity Recognition, NER\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u547d\u540d\u5b9e\u4f53\u8bc6\u522b\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4e2d\u7684\u4e00\u4e2a\u4efb\u52a1\uff0c\u65e8\u5728\u4ece\u6587\u672c\u4e2d\u8bc6\u522b\u51fa\u5177\u6709\u7279\u5b9a\u610f\u4e49\u7684\u5b9e\u4f53\uff0c\u5982\u4eba\u540d\u3001\u5730\u540d\u3001\u7ec4\u7ec7\u540d\u7b49\u3002\u8fd9\u4e9b\u5b9e\u4f53\u5bf9\u4e8e\u7406\u89e3\u6587\u672c\u7684\u542b\u4e49\u548c\u4e0a\u4e0b\u6587\u81f3\u5173\u91cd\u8981\u3002
<\/span><\/p>\n

59. \u8bed\u4e49\u89d2\u8272\u6807\u6ce8\uff08Semantic Role Labeling, SRL\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u8bed\u4e49\u89d2\u8272\u6807\u6ce8\u662f\u4e00\u79cd\u5206\u6790\u53e5\u5b50\u4e2d\u8c13\u8bcd-\u8bba\u5143\u7ed3\u6784\u7684\u6280\u672f\u3002\u5b83\u8bc6\u522b\u53e5\u5b50\u4e2d\u7684\u8c13\u8bcd\uff08\u5982\u52a8\u8bcd\u3001\u5f62\u5bb9\u8bcd\u7b49\uff09\u4ee5\u53ca\u4e0e\u4e4b\u76f8\u5173\u7684\u8bba\u5143\uff08\u5982\u65bd\u4e8b\u3001\u53d7\u4e8b\u7b49\uff09\uff0c\u5e76\u6807\u6ce8\u5b83\u4eec\u4e4b\u95f4\u7684\u8bed\u4e49\u5173\u7cfb\u3002\u8fd9\u5bf9\u4e8e\u7406\u89e3\u53e5\u5b50\u7684\u6df1\u5c42\u542b\u4e49\u548c\u6784\u5efa\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7cfb\u7edf\u81f3\u5173\u91cd\u8981\u3002
<\/span><\/p>\n

60. \u8bed\u97f3\u5408\u6210\uff08Speech Synthesis\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u8bed\u97f3\u5408\u6210\u662f\u5c06\u6587\u672c\u8f6c\u6362\u4e3a\u81ea\u7136\u3001\u6d41\u7545\u7684\u8bed\u97f3\u7684\u6280\u672f\u3002\u5b83\u6d89\u53ca\u6587\u672c\u5206\u6790\u3001\u58f0\u5b66\u5efa\u6a21\u548c\u8bed\u97f3\u751f\u6210\u7b49\u591a\u4e2a\u6b65\u9aa4\uff0c\u5e38\u7528\u4e8e\u8bed\u97f3\u52a9\u624b\u3001\u865a\u62df\u89d2\u8272\u7b49\u5e94\u7528\u4e2d\u3002
<\/span><\/p>\n

61. \u751f\u6210\u6a21\u578b\uff08Generative Models\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u751f\u6210\u6a21\u578b\u662f\u4e00\u7c7b\u80fd\u591f\u751f\u6210\u65b0\u6570\u636e\u7684\u673a\u5668\u5b66\u4e60\u6a21\u578b\u3002\u5b83\u4eec\u901a\u8fc7\u5b66\u4e60\u6570\u636e\u7684\u6982\u7387\u5206\u5e03\u6765\u751f\u6210\u4e0e\u539f\u59cb\u6570\u636e\u76f8\u4f3c\u7684\u65b0\u6837\u672c\u3002\u5e38\u89c1\u7684\u751f\u6210\u6a21\u578b\u5305\u62ecGANs\u3001\u81ea\u7f16\u7801\u5668\uff08Autoencoders\uff09\u3001\u53d8\u5206\u81ea\u7f16\u7801\u5668\uff08Variational Autoencoders\uff09\u7b49\u3002
<\/span><\/p>\n

62. \u5224\u522b\u6a21\u578b\uff08Discriminative Models\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u5224\u522b\u6a21\u578b\u662f\u4e00\u7c7b\u76f4\u63a5\u5b66\u4e60\u8f93\u5165\u5230\u8f93\u51fa\u6620\u5c04\u7684\u673a\u5668\u5b66\u4e60\u6a21\u578b\u3002\u5b83\u4eec\u7684\u76ee\u6807\u662f\u5b66\u4e60\u4e00\u4e2a\u51b3\u7b56\u8fb9\u754c\u6216\u51fd\u6570\uff0c\u7528\u4e8e\u533a\u5206\u4e0d\u540c\u7c7b\u522b\u7684\u6570\u636e\u3002\u5e38\u89c1\u7684\u5224\u522b\u6a21\u578b\u5305\u62ec\u652f\u6301\u5411\u91cf\u673a\uff08SVMs\uff09\u3001\u903b\u8f91\u56de\u5f52\uff08Logistic Regression\uff09\u3001\u795e\u7ecf\u7f51\u7edc\u7b49\u3002
<\/span><\/p>\n

63. \u795e\u7ecf\u7f51\u7edc\u7684\u53ef\u89c6\u5316\uff08Neural Network Visualization\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u795e\u7ecf\u7f51\u7edc\u7684\u53ef\u89c6\u5316\u6280\u672f\u5141\u8bb8\u7814\u7a76\u4eba\u5458\u548c\u5f00\u53d1\u8005\u66f4\u76f4\u89c2\u5730\u7406\u89e3\u795e\u7ecf\u7f51\u7edc\u7684\u5185\u90e8\u7ed3\u6784\u548c\u51b3\u7b56\u8fc7\u7a0b\u3002\u8fd9\u4e9b\u6280\u672f\u53ef\u4ee5\u663e\u793a\u795e\u7ecf\u5143\u7684\u6fc0\u6d3b\u60c5\u51b5\u3001\u6743\u91cd\u5206\u5e03\u3001\u7279\u5f81\u6620\u5c04\u7b49\uff0c\u4ece\u800c\u5e2e\u52a9\u4eba\u4eec\u66f4\u597d\u5730\u7406\u89e3\u6a21\u578b\u7684\u5de5\u4f5c\u539f\u7406\u548c\u6027\u80fd\u3002
<\/span><\/p>\n

64. \u5f3a\u5316\u5b66\u4e60\u4e2d\u7684<\/strong><\/span>\u591a\u667a\u80fd\u4f53\u7cfb\u7edf<\/strong><\/span>\uff08Multi-Agent Systems\uff09<\/strong><\/span><\/span><\/p>\n

\u89e3\u91ca\uff1a\u591a\u667a\u80fd\u4f53\u7cfb\u7edf\u6d89\u53ca\u591a\u4e2a\u667a\u80fd\u4f53\uff08\u6216\u4ee3\u7406\uff09\u5728\u5171\u4eab\u73af\u5883\u4e2d\u8fdb\u884c\u4ea4\u4e92\u548c\u534f\u4f5c\u3002\u5728\u5f3a\u5316\u5b66\u4e60\u4e2d\uff0c\u591a\u667a\u80fd\u4f53\u7cfb\u7edf\u53ef\u4ee5\u6a21\u62df\u73b0\u5b9e\u4e16\u754c\u4e2d\u590d\u6742\u7684\u4ea4\u4e92\u573a\u666f\uff0c\u5e76\u7814\u7a76\u667a\u80fd\u4f53\u4e4b\u95f4\u7684\u5408\u4f5c\u3001\u7ade\u4e89\u548c\u534f\u8c03\u7b49\u884c\u4e3a\u3002
<\/span><\/p>\n

65. \u5f3a\u5316\u5b66\u4e60\u4e2d\u7684\u5c42\u6b21\u5316\u5b66\u4e60\uff08Hierarchical Learning\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u5c42\u6b21\u5316\u5b66\u4e60\u662f\u4e00\u79cd\u5c06\u590d\u6742\u4efb\u52a1\u5206\u89e3\u4e3a\u591a\u4e2a\u5b50\u4efb\u52a1\u6216\u5c42\u6b21\u7684\u65b9\u6cd5\u3002\u5728\u5f3a\u5316\u5b66\u4e60\u4e2d\uff0c\u5c42\u6b21\u5316\u5b66\u4e60\u53ef\u4ee5\u5e2e\u52a9\u667a\u80fd\u4f53\u66f4\u597d\u5730\u5904\u7406\u957f\u671f\u4f9d\u8d56\u548c\u590d\u6742\u7b56\u7565\uff0c\u4ece\u800c\u63d0\u9ad8\u5b66\u4e60\u6548\u7387\u548c\u6027\u80fd\u3002
<\/span><\/p>\n

66. \u6df1\u5ea6\u5f3a\u5316\u5b66\u4e60\uff08Deep Reinforcement Learning\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u6df1\u5ea6\u5f3a\u5316\u5b66\u4e60\u662f\u5c06\u6df1\u5ea6\u5b66\u4e60\u548c\u5f3a\u5316\u5b66\u4e60\u76f8\u7ed3\u5408\u7684\u6280\u672f\u3002\u5b83\u4f7f\u7528\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u6765\u903c\u8fd1\u503c\u51fd\u6570\u6216\u7b56\u7565\u51fd\u6570\uff0c\u5e76\u901a\u8fc7\u5f3a\u5316\u5b66\u4e60\u7b97\u6cd5\u6765\u4f18\u5316\u8fd9\u4e9b\u51fd\u6570\u3002\u6df1\u5ea6\u5f3a\u5316\u5b66\u4e60\u5728\u5904\u7406\u9ad8\u7ef4\u8f93\u5165\u548c\u590d\u6742\u51b3\u7b56\u95ee\u9898\u65f6\u8868\u73b0\u51fa\u8272\u3002
<\/span><\/p>\n

67. \u4eba\u5de5\u667a\u80fd\u4f26\u7406\uff08AI Ethics\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u4eba\u5de5\u667a\u80fd\u4f26\u7406\u662f\u7814\u7a76AI\u7cfb\u7edf\u5728\u8bbe\u8ba1\u3001\u5f00\u53d1\u3001\u90e8\u7f72\u548c\u4f7f\u7528\u8fc7\u7a0b\u4e2d\u6d89\u53ca\u7684\u9053\u5fb7\u548c\u4f26\u7406\u95ee\u9898\u7684\u9886\u57df\u3002\u5b83\u5173\u6ce8\u4e8e\u786e\u4fddAI\u7cfb\u7edf\u7684\u516c\u5e73\u6027\u3001\u900f\u660e\u6027\u3001\u53ef\u89e3\u91ca\u6027\u548c\u8d23\u4efb\u6027\uff0c\u4ee5\u53ca\u51cf\u8f7b\u6f5c\u5728\u7684\u8d1f\u9762\u5f71\u54cd\u3002
<\/span><\/p>\n

68. \u4eba\u5de5\u667a\u80fd\u5b89\u5168\uff08AI Security\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u4eba\u5de5\u667a\u80fd\u5b89\u5168\u662f\u7814\u7a76\u5982\u4f55\u4fdd\u62a4AI\u7cfb\u7edf\u514d\u53d7\u653b\u51fb\u548c\u6ee5\u7528\u7684\u9886\u57df\u3002\u5b83\u6d89\u53ca\u8bc6\u522b\u6f5c\u5728\u7684\u5a01\u80c1\u548c\u6f0f\u6d1e\uff0c\u5e76\u5f00\u53d1\u76f8\u5e94\u7684\u9632\u5fa1\u7b56\u7565\u548c\u5de5\u5177\uff0c\u4ee5\u786e\u4fddAI\u7cfb\u7edf\u7684\u53ef\u9760\u6027\u548c\u5b89\u5168\u6027\u3002
<\/span><\/p>\n

69. \u8fb9\u7f18\u8ba1\u7b97\uff08<\/strong><\/span>Edge Computing<\/strong><\/span>\uff09<\/strong><\/span><\/span><\/p>\n

\u89e3\u91ca\uff1a\u8fb9\u7f18\u8ba1\u7b97\u662f\u4e00\u79cd\u5c06\u8ba1\u7b97\u548c\u6570\u636e\u5b58\u50a8\u4efb\u52a1\u4ece\u4e2d\u5fc3\u5316\u7684\u6570\u636e\u4e2d\u5fc3\u8f6c\u79fb\u5230\u7f51\u7edc\u8fb9\u7f18\uff08\u5982\u8bbe\u5907\u3001\u4f20\u611f\u5668\u7b49\uff09\u7684\u6280\u672f\u3002\u5b83\u5141\u8bb8\u66f4\u5feb\u901f\u5730\u5904\u7406\u548c\u5206\u6790\u6570\u636e\uff0c\u51cf\u5c11\u5ef6\u8fdf\u548c\u5e26\u5bbd\u9700\u6c42\uff0c\u5e76\u63d0\u9ad8\u7cfb\u7edf\u7684\u54cd\u5e94\u6027\u548c\u6548\u7387\u3002
<\/span><\/p>\n

70. \u8054\u90a6\u5b66\u4e60\u4e2d\u7684\u9690\u79c1\u4fdd\u62a4\uff08Privacy-Preserving Federated Learning\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u9690\u79c1\u4fdd\u62a4\u8054\u90a6\u5b66\u4e60\u662f\u4e00\u79cd\u5728\u4fdd\u62a4\u7528\u6237\u9690\u79c1\u7684\u540c\u65f6\u8fdb\u884c\u5206\u5e03\u5f0f\u5b66\u4e60\u7684\u6280\u672f\u3002\u5b83\u901a\u8fc7\u4f7f\u7528\u52a0\u5bc6\u3001\u5dee\u5206\u9690\u79c1\u7b49\u6280\u672f\u6765\u4fdd\u62a4\u7528\u6237\u6570\u636e\u4e0d\u88ab\u6cc4\u9732\u6216\u6ee5\u7528\uff0c\u540c\u65f6\u5141\u8bb8\u591a\u4e2a\u53c2\u4e0e\u8005\u534f\u4f5c\u8bad\u7ec3\u6a21\u578b\u3002
<\/span><\/p>\n

71. \u8fc1\u79fb\u5b66\u4e60\uff08Transfer Learning\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u8fc1\u79fb\u5b66\u4e60\u662f\u4e00\u79cd\u673a\u5668\u5b66\u4e60\u6280\u672f\uff0c\u65e8\u5728\u5c06\u4ece\u6e90\u4efb\u52a1\uff08\u6216\u9886\u57df\uff09\u5b66\u5230\u7684\u77e5\u8bc6\u8fc1\u79fb\u5230\u76ee\u6807\u4efb\u52a1\uff08\u6216\u9886\u57df\uff09\u4e2d\u3002\u5b83\u53ef\u4ee5\u5e2e\u52a9\u6a21\u578b\u5728\u76ee\u6807\u4efb\u52a1\u4e0a\u66f4\u5feb\u5730\u5b66\u4e60\uff0c\u7279\u522b\u662f\u5728\u76ee\u6807\u4efb\u52a1\u6570\u636e\u6709\u9650\u6216\u6807\u6ce8\u56f0\u96be\u7684\u60c5\u51b5\u4e0b\u3002
<\/span><\/p>\n

72. \u81ea\u76d1\u7763\u5b66\u4e60\uff08Self-Supervised Learning\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u81ea\u76d1\u7763\u5b66\u4e60\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u65e0\u76d1\u7763\u5b66\u4e60\u65b9\u6cd5\uff0c\u5b83\u5229\u7528\u6570\u636e\u672c\u8eab\u7684\u7279\u6027\u6765\u751f\u6210\u76d1\u7763\u4fe1\u53f7\u3002\u4f8b\u5982\uff0c\u5728\u56fe\u50cf\u6570\u636e\u4e2d\uff0c\u53ef\u4ee5\u901a\u8fc7\u9884\u6d4b\u56fe\u50cf\u7684\u4e0d\u540c\u53d8\u6362\uff08\u5982\u65cb\u8f6c\u3001\u7ffb\u8f6c\uff09\u6765\u8bad\u7ec3\u6a21\u578b\uff0c\u4ece\u800c\u5b66\u4e60\u5230\u6709\u7528\u7684\u7279\u5f81\u8868\u793a\u3002
<\/span><\/p>\n

73. \u8054\u90a6\u5b66\u4e60\uff08Federated Learning\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u8054\u90a6\u5b66\u4e60\u662f\u4e00\u79cd\u5206\u5e03\u5f0f\u673a\u5668\u5b66\u4e60\u6280\u672f\uff0c\u5b83\u5141\u8bb8\u591a\u4e2a\u8bbe\u5907\u6216\u670d\u52a1\u5668\u5728\u672c\u5730\u8bad\u7ec3\u6a21\u578b\uff0c\u5e76\u901a\u8fc7\u805a\u5408\u672c\u5730\u6a21\u578b\u7684\u66f4\u65b0\u6765\u5171\u540c\u4f18\u5316\u5168\u5c40\u6a21\u578b\u3002\u8fd9\u79cd\u65b9\u6cd5\u53ef\u4ee5\u5728\u4fdd\u62a4\u7528\u6237\u9690\u79c1\u7684\u540c\u65f6\u5b9e\u73b0\u5206\u5e03\u5f0f\u8ba1\u7b97\u7684\u4f18\u52bf\u3002
<\/span><\/p>\n

74. \u5f3a\u5316\u5b66\u4e60\u4e2d\u7684\u9006\u5f3a\u5316\u5b66\u4e60\uff08Inverse Reinforcement Learning, IRL\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u9006\u5f3a\u5316\u5b66\u4e60\u662f\u4e00\u79cd\u4ece\u89c2\u5bdf\u5230\u7684\u884c\u4e3a\u6570\u636e\u4e2d\u63a8\u65ad\u5956\u52b1\u51fd\u6570\u7684\u6280\u672f\u3002\u4e0e\u4f20\u7edf\u7684\u5f3a\u5316\u5b66\u4e60\u4e0d\u540c\uff0c\u9006\u5f3a\u5316\u5b66\u4e60\u4e0d\u9700\u8981\u663e\u5f0f\u5b9a\u4e49\u5956\u52b1\u51fd\u6570\uff0c\u800c\u662f\u901a\u8fc7\u89c2\u5bdf\u667a\u80fd\u4f53\u7684\u884c\u4e3a\u6765\u63a8\u65ad\u51fa\u53ef\u80fd\u7684\u5956\u52b1\u51fd\u6570\u3002
<\/span><\/p>\n

75. \u795e\u7ecf\u7f51\u7edc\u526a\u679d\uff08Neural Network Pruning\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u795e\u7ecf\u7f51\u7edc\u526a\u679d\u662f\u4e00\u79cd\u51cf\u5c11\u795e\u7ecf\u7f51\u7edc\u5927\u5c0f\u548c\u590d\u6742\u6027\u7684\u6280\u672f\u3002\u5b83\u901a\u8fc7\u53bb\u9664\u7f51\u7edc\u4e2d\u4e0d\u91cd\u8981\u7684\u8fde\u63a5\u6216\u795e\u7ecf\u5143\u6765\u51cf\u5c11\u8ba1\u7b97\u91cf\u548c\u5b58\u50a8\u9700\u6c42\uff0c\u540c\u65f6\u4fdd\u6301\u6216\u63d0\u9ad8\u6a21\u578b\u7684\u6027\u80fd\u3002
<\/span><\/p>\n

76. \u6a21\u578b\u538b\u7f29\uff08Model Compression\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u6a21\u578b\u538b\u7f29\u662f\u4e00\u79cd\u51cf\u5c11\u673a\u5668\u5b66\u4e60\u6a21\u578b\u5927\u5c0f\u548c\u590d\u6742\u6027\u7684\u6280\u672f\uff0c\u4ee5\u4fbf\u5728\u8d44\u6e90\u53d7\u9650\u7684\u8bbe\u5907\u4e0a\u90e8\u7f72\u6a21\u578b\u3002\u5b83\u53ef\u4ee5\u901a\u8fc7\u91cf\u5316\u3001\u526a\u679d\u3001\u84b8\u998f\u7b49\u6280\u672f\u6765\u5b9e\u73b0\u3002
<\/span><\/p>\n

77. \u6df1\u5ea6\u5b66\u4e60\u4e2d\u7684\u6fc0\u6d3b\u51fd\u6570\uff08Activation Functions\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u6fc0\u6d3b\u51fd\u6570\u662f\u795e\u7ecf\u7f51\u7edc\u4e2d\u7528\u4e8e\u5f15\u5165\u975e\u7ebf\u6027\u7279\u6027\u7684\u51fd\u6570\u3002\u5e38\u89c1\u7684\u6fc0\u6d3b\u51fd\u6570\u5305\u62ecSigmoid\u3001ReLU\uff08Rectified Linear Unit\uff09\u3001Tanh\u7b49\u3002\u8fd9\u4e9b\u51fd\u6570\u51b3\u5b9a\u4e86\u795e\u7ecf\u5143\u5bf9\u8f93\u5165\u4fe1\u53f7\u7684\u54cd\u5e94\u65b9\u5f0f\u3002
<\/span><\/p>\n

78. \u5bf9\u6297\u6837\u672c\uff08Adversarial Examples\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u5bf9\u6297\u6837\u672c\u662f\u6545\u610f\u8bbe\u8ba1\u7528\u4e8e\u8bef\u5bfc\u673a\u5668\u5b66\u4e60\u6a21\u578b\u7684\u8f93\u5165\u6837\u672c\u3002\u5b83\u4eec\u901a\u8fc7\u6dfb\u52a0\u5fae\u5c0f\u7684\u6270\u52a8\u6765\u4f7f\u6a21\u578b\u4ea7\u751f\u9519\u8bef\u7684\u8f93\u51fa\uff0c\u63ed\u793a\u4e86\u673a\u5668\u5b66\u4e60\u6a21\u578b\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\u7684\u8106\u5f31\u6027\u3002
<\/span><\/p>\n

79. \u751f\u6210\u5f0f\u5bf9\u6297\u7f51\u7edc\u4e2d\u7684\u6a21\u5f0f\u5d29\u6e83\uff08Mode Collapse\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u6a21\u5f0f\u5d29\u6e83\u662fGANs\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u53ef\u80fd\u51fa\u73b0\u7684\u4e00\u79cd\u95ee\u9898\uff0c\u5176\u4e2d\u751f\u6210\u5668\u53ea\u751f\u6210\u6709\u9650\u7684\u51e0\u79cd\u6837\u672c\uff0c\u800c\u5ffd\u7565\u4e86\u6570\u636e\u96c6\u4e2d\u7684\u5176\u4ed6\u6a21\u5f0f\u3002\u8fd9\u5bfc\u81f4\u751f\u6210\u7684\u6837\u672c\u7f3a\u4e4f\u591a\u6837\u6027\u3002
<\/span><\/p>\n

80. \u53ef\u89e3\u91ca\u6027AI\uff08Explainable AI, XAI\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u53ef\u89e3\u91ca\u6027AI\u65e8\u5728\u63d0\u9ad8\u673a\u5668\u5b66\u4e60\u6a21\u578b\u7684\u53ef\u89e3\u91ca\u6027\u548c\u900f\u660e\u5ea6\u3002\u5b83\u901a\u8fc7\u7814\u7a76\u6a21\u578b\u7684\u5de5\u4f5c\u673a\u5236\u3001\u53ef\u89c6\u5316\u6a21\u578b\u7684\u51b3\u7b56\u8fc7\u7a0b\u3001\u63d0\u4f9b\u6a21\u578b\u7684\u89e3\u91ca\u6027\u8f93\u51fa\u7b49\u65b9\u5f0f\uff0c\u5e2e\u52a9\u4eba\u4eec\u7406\u89e3\u6a21\u578b\u662f\u5982\u4f55\u505a\u51fa\u51b3\u7b56\u7684\u3002
<\/span><\/p>\n

81. \u5f31\u76d1\u7763\u5b66\u4e60\uff08Weakly Supervised Learning\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u5f31\u76d1\u7763\u5b66\u4e60\u662f\u4e00\u79cd\u4ecb\u4e8e\u65e0\u76d1\u7763\u548c\u5168\u76d1\u7763\u5b66\u4e60\u4e4b\u95f4\u7684\u5b66\u4e60\u65b9\u6cd5\u3002\u5b83\u4f7f\u7528\u6bd4\u5168\u76d1\u7763\u5b66\u4e60\u66f4\u5f31\u7684\u76d1\u7763\u4fe1\u53f7\uff08\u5982\u4e0d\u5b8c\u5168\u7684\u6807\u7b7e\u3001\u4e0d\u51c6\u786e\u7684\u6807\u7b7e\u7b49\uff09\u6765\u8bad\u7ec3\u6a21\u578b\u3002\u8fd9\u79cd\u65b9\u6cd5\u53ef\u4ee5\u5728\u6807\u7b7e\u6570\u636e\u6709\u9650\u6216\u83b7\u53d6\u6210\u672c\u8f83\u9ad8\u7684\u60c5\u51b5\u4e0b\u4f7f\u7528\u3002
<\/span><\/p>\n

82. \u4e0a\u4e0b\u6587\u611f\u77e5\u8ba1\u7b97\uff08Context-Aware Computing\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u4e0a\u4e0b\u6587\u611f\u77e5\u8ba1\u7b97\u662f\u4e00\u79cd\u80fd\u591f\u611f\u77e5\u548c\u5229\u7528\u5468\u56f4\u73af\u5883\u4fe1\u606f\uff08\u5982\u4f4d\u7f6e\u3001\u65f6\u95f4\u3001\u7528\u6237\u72b6\u6001\u7b49\uff09\u7684\u8ba1\u7b97\u6280\u672f\u3002\u5b83\u53ef\u4ee5\u5e2e\u52a9\u7cfb\u7edf\u66f4\u597d\u5730\u7406\u89e3\u7528\u6237\u9700\u6c42\uff0c\u5e76\u63d0\u4f9b\u66f4\u667a\u80fd\u3001\u66f4\u4e2a\u6027\u5316\u7684\u670d\u52a1\u3002
<\/span><\/p>\n

83. \u60c5\u611f\u5206\u6790\uff08Sentiment Analysis\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u60c5\u611f\u5206\u6790\u662f\u4e00\u79cd\u81ea\u7136\u8bed\u8a00\u5904\u7406\u6280\u672f\uff0c\u7528\u4e8e\u81ea\u52a8\u8bc6\u522b\u548c\u5206\u7c7b\u6587\u672c\u4e2d\u7684\u60c5\u611f\u503e\u5411\uff08\u5982\u79ef\u6781\u3001\u6d88\u6781\u3001\u4e2d\u6027\u7b49\uff09\u3002\u5b83\u5728\u793e\u4ea4\u5a92\u4f53\u5206\u6790\u3001\u4ea7\u54c1\u8bc4\u8bba\u6316\u6398\u7b49\u9886\u57df\u6709\u5e7f\u6cdb\u5e94\u7528\u3002
<\/span><\/p>\n

84. \u95ee\u7b54\u7cfb\u7edf\uff08Question Answering Systems\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u95ee\u7b54\u7cfb\u7edf\u662f\u4e00\u79cd\u80fd\u591f\u81ea\u52a8\u56de\u7b54\u7528\u6237\u95ee\u9898\u7684\u7cfb\u7edf\u3002\u5b83\u4f7f\u7528\u81ea\u7136\u8bed\u8a00\u5904\u7406\u6280\u672f\u6765\u7406\u89e3\u7528\u6237\u7684\u95ee\u9898\uff0c\u5e76\u4ece\u77e5\u8bc6\u5e93\u3001\u6587\u6863\u6216\u5176\u4ed6\u4fe1\u606f\u6e90\u4e2d\u68c0\u7d22\u7b54\u6848\u3002\u95ee\u7b54\u7cfb\u7edf\u5728\u667a\u80fd\u52a9\u624b\u3001\u641c\u7d22\u5f15\u64ce\u7b49\u9886\u57df\u6709\u5e7f\u6cdb\u5e94\u7528\u3002
<\/span><\/p>\n

85. \u795e\u7ecf\u7f51\u7edc\u67b6\u6784\u641c\u7d22\uff08Neural Architecture Search, NAS\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u795e\u7ecf\u7f51\u7edc\u67b6\u6784\u641c\u7d22\u662f\u4e00\u79cd\u81ea\u52a8\u5316\u8bbe\u8ba1\u795e\u7ecf\u7f51\u7edc\u67b6\u6784\u7684\u6280\u672f\u3002\u5b83\u901a\u8fc7\u7b97\u6cd5\u6765\u641c\u7d22\u548c\u4f18\u5316\u7f51\u7edc\u7684\u7ed3\u6784\u548c\u53c2\u6570\uff0c\u4ee5\u627e\u5230\u6027\u80fd\u6700\u4f73\u7684\u6a21\u578b\u3002\u8fd9\u79cd\u65b9\u6cd5\u53ef\u4ee5\u8282\u7701\u624b\u52a8\u8bbe\u8ba1\u7f51\u7edc\u67b6\u6784\u7684\u65f6\u95f4\u548c\u7cbe\u529b\u3002
<\/span><\/p>\n

86. \u795e\u7ecf\u7b26\u53f7\u96c6\u6210\uff08Neuro-Symbolic Integration\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u795e\u7ecf\u7b26\u53f7\u96c6\u6210\u662f\u5c06\u795e\u7ecf\u7f51\u7edc\u548c\u7b26\u53f7\u63a8\u7406\u76f8\u7ed3\u5408\u7684\u6280\u672f\u3002\u5b83\u65e8\u5728\u7ed3\u5408\u4e24\u8005\u7684\u4f18\u52bf\uff0c\u4ee5\u540c\u65f6\u5904\u7406\u611f\u77e5\u548c\u63a8\u7406\u4efb\u52a1\u3002\u795e\u7ecf\u7b26\u53f7\u96c6\u6210\u5728\u590d\u6742\u51b3\u7b56\u3001\u63a8\u7406\u548c\u89e3\u91ca\u6027\u65b9\u9762\u8868\u73b0\u51fa\u8272\u3002
<\/span><\/p>\n

87. \u5f3a\u5316\u5b66\u4e60\u4e2d\u7684\u63a2\u7d22\u7b56\u7565\uff08Exploration Strategies\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u5728\u5f3a\u5316\u5b66\u4e60\u4e2d\uff0c\u63a2\u7d22\u7b56\u7565\u5b9a\u4e49\u4e86\u667a\u80fd\u4f53\u5982\u4f55\u63a2\u7d22\u73af\u5883\u4ee5\u53d1\u73b0\u65b0\u7684\u7b56\u7565\u548c\u5956\u52b1\u3002\u5e38\u89c1\u7684\u63a2\u7d22\u7b56\u7565\u5305\u62ec\u03b5-\u8d2a\u5fc3\u7b56\u7565\u3001\u57fa\u4e8e\u4e0d\u786e\u5b9a\u6027\u7684\u63a2\u7d22\u3001\u57fa\u4e8e\u5185\u5728\u5956\u52b1\u7684\u63a2\u7d22\u7b49\u3002
<\/span><\/p>\n

88. \u5e8f\u5217\u751f\u6210\u6a21\u578b\uff08Sequence Generation Models\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u5e8f\u5217\u751f\u6210\u6a21\u578b\u662f\u4e00\u7c7b\u80fd\u591f\u751f\u6210\u8fde\u7eed\u5e8f\u5217\u7684\u673a\u5668\u5b66\u4e60\u6a21\u578b\u3002\u5b83\u4eec\u901a\u5e38\u7528\u4e8e\u5904\u7406\u81ea\u7136\u8bed\u8a00\u6587\u672c\u3001\u65f6\u95f4\u5e8f\u5217\u6570\u636e\u7b49\u3002\u5e38\u89c1\u7684\u5e8f\u5217\u751f\u6210\u6a21\u578b\u5305\u62ec\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\uff08RNNs\uff09\u3001\u957f\u77ed\u65f6\u8bb0\u5fc6\u7f51\u7edc\uff08LSTMs\uff09\u3001Transformer\u7b49\u3002
<\/span><\/p>\n

89. \u795e\u7ecf\u98ce\u683c\u8fc1\u79fb\uff08Neural Style Transfer\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u795e\u7ecf\u98ce\u683c\u8fc1\u79fb\u662f\u4e00\u79cd\u4f7f\u7528\u6df1\u5ea6\u5b66\u4e60\u6280\u672f\u5c06\u4e00\u5e45\u56fe\u50cf\u7684\u98ce\u683c\u8fc1\u79fb\u5230\u53e6\u4e00\u5e45\u56fe\u50cf\u7684\u5185\u5bb9\u4e0a\u7684\u6280\u672f\u3002\u5b83\u901a\u5e38\u4f7f\u7528\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\uff08CNNs\uff09\u6765\u63d0\u53d6\u56fe\u50cf\u7684\u5185\u5bb9\u548c\u98ce\u683c\u7279\u5f81\uff0c\u5e76\u901a\u8fc7\u4f18\u5316\u7b97\u6cd5\u5c06\u4e24\u8005\u878d\u5408\u3002
<\/span><\/p>\n

90. \u5d4c\u5165\u8868\u793a\uff08Embedding Representations\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u5d4c\u5165\u8868\u793a\u662f\u4e00\u79cd\u5c06\u79bb\u6563\u6570\u636e\uff08\u5982\u5355\u8bcd\u3001\u7528\u6237\u3001\u7269\u54c1\u7b49\uff09\u6620\u5c04\u5230\u8fde\u7eed\u5411\u91cf\u7a7a\u95f4\u4e2d\u7684\u6280\u672f\u3002\u5b83\u5141\u8bb8\u6211\u4eec\u5728\u8fde\u7eed\u7a7a\u95f4\u4e2d\u6bd4\u8f83\u548c\u64cd\u4f5c\u8fd9\u4e9b\u79bb\u6563\u6570\u636e\uff0c\u4ece\u800c\u63ed\u793a\u5b83\u4eec\u4e4b\u95f4\u7684\u6f5c\u5728\u5173\u7cfb\u548c\u76f8\u4f3c\u6027\u3002
<\/span><\/p>\n

91. \u6ce8\u610f\u529b\u673a\u5236\uff08Attention Mechanisms\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u6ce8\u610f\u529b\u673a\u5236\u662f\u4e00\u79cd\u5728\u795e\u7ecf\u7f51\u7edc\u4e2d\u6a21\u62df\u4eba\u7c7b\u6ce8\u610f\u529b\u5206\u914d\u7684\u6280\u672f\u3002\u5b83\u5141\u8bb8\u6a21\u578b\u5728\u5904\u7406\u8f93\u5165\u6570\u636e\u65f6\u4e13\u6ce8\u4e8e\u91cd\u8981\u7684\u90e8\u5206\uff0c\u4ece\u800c\u66f4\u6709\u6548\u5730\u63d0\u53d6\u4fe1\u606f\u3002\u6ce8\u610f\u529b\u673a\u5236\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u3001\u8ba1\u7b97\u673a\u89c6\u89c9\u7b49\u9886\u57df\u6709\u5e7f\u6cdb\u5e94\u7528\u3002
<\/span><\/p>\n

92. \u5bf9\u6297\u8bad\u7ec3\uff08Adversarial Training\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u5bf9\u6297\u8bad\u7ec3\u662f\u4e00\u79cd\u901a\u8fc7\u751f\u6210\u5bf9\u6297\u6837\u672c\u6765\u589e\u5f3a\u6a21\u578b\u9c81\u68d2\u6027\u7684\u6280\u672f\u3002\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\uff0c\u6a21\u578b\u4e0d\u4ec5\u88ab\u8bad\u7ec3\u6765\u8bc6\u522b\u539f\u59cb\u6837\u672c\uff0c\u8fd8\u88ab\u8bad\u7ec3\u6765\u8bc6\u522b\u7ecf\u8fc7\u5fae\u5c0f\u6270\u52a8\u7684\u5bf9\u6297\u6837\u672c\u3002\u8fd9\u79cd\u65b9\u6cd5\u53ef\u4ee5\u5e2e\u52a9\u6a21\u578b\u62b5\u5fa1\u5bf9\u6297\u653b\u51fb\u3002
<\/span><\/p>\n

93. \u81ea\u52a8\u5316\u673a\u5668\u5b66\u4e60\uff08Automated Machine Learning, AutoML\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u81ea\u52a8\u5316\u673a\u5668\u5b66\u4e60\u662f\u4e00\u79cd\u65e8\u5728\u81ea\u52a8\u5316\u673a\u5668\u5b66\u4e60\u6d41\u7a0b\u7684\u6280\u672f\u3002\u5b83\u4f7f\u7528\u7b97\u6cd5\u548c\u5de5\u5177\u6765\u81ea\u52a8\u9009\u62e9\u7b97\u6cd5\u3001\u8c03\u6574\u53c2\u6570\u3001\u8bc4\u4f30\u6a21\u578b\u7b49\uff0c\u4ee5\u51cf\u8f7b\u624b\u52a8\u914d\u7f6e\u548c\u8c03\u4f18\u7684\u8d1f\u62c5\u3002\u81ea\u52a8\u5316\u673a\u5668\u5b66\u4e60\u53ef\u4ee5\u52a0\u901f\u673a\u5668\u5b66\u4e60\u6a21\u578b\u7684\u5f00\u53d1\u548c\u90e8\u7f72\u3002
<\/span><\/p>\n

94. \u4ea4\u4e92\u5f0f\u673a\u5668\u5b66\u4e60\uff08Interactive Machine Learning, IML\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u4ea4\u4e92\u5f0f\u673a\u5668\u5b66\u4e60\u662f\u4e00\u79cd\u5141\u8bb8\u4eba\u7c7b\u4e0e\u673a\u5668\u5b66\u4e60\u6a21\u578b\u8fdb\u884c\u4ea4\u4e92\u548c\u534f\u4f5c\u7684\u6280\u672f\u3002\u5b83\u53ef\u4ee5\u901a\u8fc7\u63d0\u4f9b\u53cd\u9988\u3001\u7ea0\u6b63\u9519\u8bef\u3001\u6307\u5bfc\u6a21\u578b\u5b66\u4e60\u7b49\u65b9\u5f0f\u6765\u6539\u8fdb\u6a21\u578b\u7684\u6027\u80fd\u3002\u4ea4\u4e92\u5f0f\u673a\u5668\u5b66\u4e60\u53ef\u4ee5\u63d0\u9ad8\u6a21\u578b\u7684\u51c6\u786e\u6027\u548c\u53ef\u9760\u6027\uff0c\u5e76\u4fc3\u8fdb\u4eba\u7c7b\u4e0eAI\u4e4b\u95f4\u7684\u5408\u4f5c\u3002
<\/span><\/p>\n

95. \u8bed\u4e49\u5206\u5272\uff08Semantic Segmentation\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u8bed\u4e49\u5206\u5272\u662f\u4e00\u79cd\u8ba1\u7b97\u673a\u89c6\u89c9\u4efb\u52a1\uff0c\u65e8\u5728\u5c06\u56fe\u50cf\u4e2d\u7684\u6bcf\u4e2a\u50cf\u7d20\u5206\u7c7b\u4e3a\u4e0d\u540c\u7684\u8bed\u4e49\u7c7b\u522b\uff08\u5982\u5929\u7a7a\u3001\u5efa\u7b51\u3001\u8f66\u8f86\u7b49\uff09\u3002\u5b83\u5141\u8bb8\u6211\u4eec\u66f4\u6df1\u5165\u5730\u7406\u89e3\u56fe\u50cf\u7684\u5185\u5bb9\uff0c\u5e76\u4e3a\u5404\u79cd\u5e94\u7528\uff08\u5982\u81ea\u52a8\u9a7e\u9a76\u3001\u533b\u5b66\u5f71\u50cf\u5206\u6790\uff09\u63d0\u4f9b\u57fa\u7840\u3002
<\/span><\/p>\n

96. \u534f\u540c\u8fc7\u6ee4\uff08Collaborative Filtering\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u534f\u540c\u8fc7\u6ee4\u662f\u4e00\u79cd\u63a8\u8350\u7cfb\u7edf\u6280\u672f\uff0c\u5b83\u901a\u8fc7\u5206\u6790\u7528\u6237\u7684\u5386\u53f2\u884c\u4e3a\u548c\u504f\u597d\u6765\u63a8\u8350\u76f8\u4f3c\u6216\u76f8\u5173\u7684\u9879\u76ee\u3002\u534f\u540c\u8fc7\u6ee4\u57fa\u4e8e\u7528\u6237-\u9879\u76ee\u4e4b\u95f4\u7684\u4ea4\u4e92\u6570\u636e\uff08\u5982\u8bc4\u5206\u3001\u8d2d\u4e70\u8bb0\u5f55\u7b49\uff09\u6765\u6784\u5efa\u6a21\u578b\uff0c\u5e76\u9884\u6d4b\u7528\u6237\u5bf9\u65b0\u9879\u76ee\u7684\u5174\u8da3\u7a0b\u5ea6\u3002
<\/span><\/p>\n

97. \u6df1\u5ea6\u4f2a\u9020\uff08Deepfakes\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u6df1\u5ea6\u4f2a\u9020\u662f\u6307\u4f7f\u7528\u6df1\u5ea6\u5b66\u4e60\u6280\u672f\u6765\u751f\u6210\u9ad8\u5ea6\u903c\u771f\u7684\u865a\u5047\u56fe\u50cf\u3001\u89c6\u9891\u6216\u97f3\u9891\u7684\u6280\u672f\u3002\u5b83\u53ef\u4ee5\u901a\u8fc7\u66ff\u6362\u56fe\u50cf\u6216\u89c6\u9891\u4e2d\u7684\u76ee\u6807\u4eba\u7269\u3001\u6539\u53d8\u8bed\u97f3\u7b49\u65b9\u5f0f\u6765\u521b\u5efa\u865a\u5047\u7684\u5a92\u4f53\u5185\u5bb9\u3002\u6df1\u5ea6\u4f2a\u9020\u6280\u672f\u7684\u6ee5\u7528\u53ef\u80fd\u5f15\u53d1\u4f26\u7406\u548c\u6cd5\u5f8b\u95ee\u9898\u3002
<\/span><\/p>\n

98. \u56e0\u679c\u63a8\u7406\uff08Causal Reasoning\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u56e0\u679c\u63a8\u7406\u662f\u4e00\u79cd\u7814\u7a76\u56e0\u679c\u5173\u7cfb\u548c\u56e0\u679c\u6548\u5e94\u7684\u6280\u672f\u3002\u5b83\u65e8\u5728\u8bc6\u522b\u548c\u7406\u89e3\u4e0d\u540c\u4e8b\u4ef6\u4e4b\u95f4\u7684\u56e0\u679c\u5173\u7cfb\uff0c\u5e76\u9884\u6d4b\u5e72\u9884\u63aa\u65bd\u5bf9\u7ed3\u679c\u7684\u5f71\u54cd\u3002\u56e0\u679c\u63a8\u7406\u5728\u51b3\u7b56\u652f\u6301\u7cfb\u7edf\u3001\u793e\u4f1a\u79d1\u5b66\u3001\u533b\u5b66\u7b49\u9886\u57df\u6709\u91cd\u8981\u5e94\u7528\u3002
<\/span><\/p>\n

99. \u5f3a\u5316\u5b66\u4e60\u4e2d\u7684\u7b56\u7565\u68af\u5ea6\u65b9\u6cd5\uff08Policy Gradient Methods\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u7b56\u7565\u68af\u5ea6\u65b9\u6cd5\u662f\u4e00\u79cd\u5f3a\u5316\u5b66\u4e60\u6280\u672f\uff0c\u5b83\u76f4\u63a5\u5bf9\u7b56\u7565\uff08\u5373\u667a\u80fd\u4f53\u9009\u62e9\u52a8\u4f5c\u7684\u51fd\u6570\uff09\u8fdb\u884c\u53c2\u6570\u5316\uff0c\u5e76\u901a\u8fc7\u68af\u5ea6\u4e0a\u5347\u7b97\u6cd5\u6765\u4f18\u5316\u7b56\u7565\u53c2\u6570\uff0c\u4ee5\u6700\u5927\u5316\u671f\u671b\u7684\u7d2f\u79ef\u5956\u52b1\u3002\u8fd9\u79cd\u65b9\u6cd5\u5141\u8bb8\u667a\u80fd\u4f53\u5728\u8fde\u7eed\u52a8\u4f5c\u7a7a\u95f4\u6216\u9ad8\u7ef4\u52a8\u4f5c\u7a7a\u95f4\u4e2d\u8fdb\u884c\u5b66\u4e60\u3002
<\/span><\/p>\n

100. \u795e\u7ecf\u6e32\u67d3\uff08Neural Rendering\uff09<\/strong><\/span><\/p>\n

\u89e3\u91ca\uff1a\u795e\u7ecf\u6e32\u67d3\u662f\u4e00\u79cd\u4f7f\u7528\u795e\u7ecf\u7f51\u7edc\u6765\u6a21\u62df\u548c\u751f\u6210\u56fe\u50cf\u6216\u89c6\u9891\u7684\u6280\u672f\u3002\u5b83\u7ed3\u5408\u4e86\u8ba1\u7b97\u673a\u56fe\u5f62\u5b66\u548c\u6df1\u5ea6\u5b66\u4e60\u7684\u539f\u7406\uff0c\u53ef\u4ee5\u751f\u6210\u903c\u771f\u7684\u865a\u62df\u573a\u666f\u3001\u89d2\u8272\u52a8\u753b\u548c\u7279\u6548\u3002\u795e\u7ecf\u6e32\u67d3\u5728\u7535\u5f71\u5236\u4f5c\u3001\u6e38\u620f\u5f00\u53d1\u548c\u865a\u62df\u73b0\u5b9e\u7b49\u9886\u57df\u6709\u5e7f\u6cdb\u5e94\u7528\u3002
<\/span><\/p>\n

\u901a\u8fc7\u8fd9\u4e24\u7bc7\u6587\u7ae0\uff08\u4e0a\u7bc7\u6587\u7ae0\u94fe\u63a5\uff1ahttps:\/\/mp.weixin.qq.com\/s\/oH1oy95oAq411eNL0dW5qw\uff09\uff0c\u5e0c\u671b\u4f60\u80fd\u591f\u5bf9\u4eba\u5de5\u667a\u80fd\u9886\u57df\u7684\u57fa\u672c\u672f\u8bed\u548c\u6982\u5ff5\u6709\u4e00\u4e2a\u6e05\u6670\u7684\u7406\u89e3\u3002
<\/span><\/p>\n

\u00a0<\/span><\/p>\n

\u638c\u63e1\u8fd9\u4e9b\u77e5\u8bc6\u4e0d\u4ec5\u80fd\u63d0\u5347\u4f60\u7684\u4e13\u4e1a\u7d20\u517b\uff0c\u4e5f\u80fd\u5e2e\u52a9\u4f60\u5728\u672a\u6765\u7684\u5b66\u4e60\u548c\u5de5\u4f5c\u4e2d\u66f4\u52a0\u81ea\u5982\u5730\u5e94\u5bf9AI\u76f8\u5173\u7684\u6311\u6218\u3002<\/span><\/p>\n

\u5982\u679c\u4f60\u5bf9\u67d0\u4e9b\u540d\u8bcd\u6709\u66f4\u6df1\u5165\u7684\u5174\u8da3\uff0c\u5efa\u8bae\u8fdb\u4e00\u6b65\u67e5\u9605\u76f8\u5173\u8d44\u6599\uff0c\u6301\u7eed\u5b66\u4e60\u548c\u63a2\u7d22\u3002\u611f\u8c22\u4f60\u7684\u9605\u8bfb\uff0c\u5e0c\u671b\u8fd9\u7bc7\u6587\u7ae0\u5bf9\u4f60\u6709\u6240\u5e2e\u52a9\u3002<\/span><\/p>\n

\n
\n
\u7279\u522b\u8bf4\u660e\uff1a\u672c\u6587\u4ec5\u7528\u4e8e\u5b66\u672f\u4ea4\u6d41\uff0c\u5982\u6709\u4fb5\u6743\u8bf7\u540e\u53f0\u8054\u7cfb\u5c0f\u7f16\u5220\u9664\u3002<\/span><\/section>\n<\/section>\n<\/blockquote>\n","protected":false},"excerpt":{"rendered":"

\u7ffb\u8bd1\u5b66\u4e60 | 100\u4e2a\u5e38\u89c1AI\u540d\u8bcd\uff08\u9644\u5e26\u89e3\u91ca\uff0c\u4e0b\u7bc7\uff09 \u7ffb\u8bd1\u6280\u672f\u6559\u80b2\u4e0e\u7814\u7a76\u00a02024\u5e7410\u670817\u65e5 00:03\u00a0 […]<\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"footnotes":""},"categories":[79],"tags":[],"class_list":["post-35166","post","type-post","status-publish","format-standard","hentry","category-resource"],"_links":{"self":[{"href":"https:\/\/linguaresources.com\/index.php?rest_route=\/wp\/v2\/posts\/35166","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/linguaresources.com\/index.php?rest_route=\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/linguaresources.com\/index.php?rest_route=\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/linguaresources.com\/index.php?rest_route=\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/linguaresources.com\/index.php?rest_route=%2Fwp%2Fv2%2Fcomments&post=35166"}],"version-history":[{"count":1,"href":"https:\/\/linguaresources.com\/index.php?rest_route=\/wp\/v2\/posts\/35166\/revisions"}],"predecessor-version":[{"id":35170,"href":"https:\/\/linguaresources.com\/index.php?rest_route=\/wp\/v2\/posts\/35166\/revisions\/35170"}],"wp:attachment":[{"href":"https:\/\/linguaresources.com\/index.php?rest_route=%2Fwp%2Fv2%2Fmedia&parent=35166"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/linguaresources.com\/index.php?rest_route=%2Fwp%2Fv2%2Fcategories&post=35166"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/linguaresources.com\/index.php?rest_route=%2Fwp%2Fv2%2Ftags&post=35166"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}